永利·皇宫(中国区)官方有限公司

412永利皇宫网站新闻

创新设计 | 412永利皇宫网站双面光伏组件支架解决方案引领单面发电到双面发电的变革!


随着科技的快速发展和人们环保意识的提高,可再生能源受到了越来越多的关注。其中,光伏发电作为一种清洁可再生能源,正得到广泛的应用。太阳能电池是光伏发电系统的核心部分,目前市面上应用最多的太阳能电池组件为单面组件,即组件仅支持向阳面发电。随着技术的进步,正反两面都能发电的双面电池组件也得到了更多的应用。经测算,双面组件能提高发电量10%~30%。而且,双面组件能够减少光伏系统中的阴影效应,提高系统的可靠性和稳定性。但传统单面组件采用的“檩条+横梁”的支架体系会对双面组件背面造成遮挡,不利于双面组件发电效率的提升。

因此,本文针对双面组件的特点,提出了一种新型的双面组件支架结构形式,该结构采用常见的光伏支架,具有安装简便、成本低的优势,可供分布式光伏发电项目参考使用。

对于单面光伏组件,常用的支架方式如图1所示。
该支架体系由前后两根立柱支撑一根横梁,沿横梁纵向搭设檩条,檩条之上通过压块将组件固定。该体系通过前后立柱的混凝土配重墩固定在屋面或者地面上。结构横向由斜撑形成固定体系,纵向由混凝土基础和檩条形成固定体系。经众多实际项目验证,该结构体系能满足光伏使用的结构安全需要。

单面光伏组件只有一面有PN结,因此只能从一面吸收太阳能。而双面光伏组件正反两面都有PN结,可同时从两面吸收太阳能。因此,双面光伏组件的支架檩条应位于组件边缘,否则支架纵向檩条会对双面组件背面造成遮挡,大幅降低双面组件的发电优势。同时,还应尽可能避免其他电气设备( 如组串式逆变器)等对组件背面造成遮挡。
4.1 风荷载

光伏支架设计时,按25年重现期确定基本风压;地基基础设计时,按50年重现期确定基本风压,并考虑1.6的安全系数。垂直作用于光伏支架结构或光伏组件表面的风荷载标准值,可按下式计算:

wkzusuzw0

式中:

wk——风荷载标准值(kn/m2);

βz——高度z处的风振系数;

us、uz——风荷载体型系数、风荷载高度系数;

w0——当地基本风压(kn/m2)。
除横向风荷载外,还应考虑纵向风荷载对支架产生的水平力。计算风压时,需注意风荷载方向性,如图2所示。

4.2 雪荷载

作用于光伏支架水平投影面上的雪荷载,重现期取25年;地基基础设计时,按50年重现期确定雪荷载。安装在建筑物屋顶上的光伏组件,应考虑迎风面、背风面、遮挡物等造成的积雪不均匀分布系数。

4.3 荷载组合

光伏支架结构设计时,应进行承载能力极限状态计算和正常使用极限状态计算。前者主要计算支架构件的强度、稳定性以及连接强度;后者主要计算支架的变形、裂缝等。荷载效应计算分两种工况,分别为抗震验算和非抗震验算。

●  非抗震验算时,荷载效应的基本组合按下式计算:

SdGSGKWΨWSWKSΨSSSK

式中:

Sd——荷载组合的效应设计值;

γG——永久荷载的分项系数,取1.3;

γW、γS——风荷载、雪荷载的分项系数,取1.5;

SGK、SWK、SSK——永久荷载标准值效应、风荷载标准值效应、雪荷载标准值效应;

ΨW、ΨS——风荷载、雪荷载的组合值系数,当风荷载或雪荷载为主导荷载时,组合系数取1.0;

●  抗震验算时,荷载效应的基本组合按下式计算:

SdGSGEESEhKWΨWSWK

式中:

Sd——地震组合的效应设计值;

γG、γE、γW——重力荷载的分项系数,取1.3;水平地震作用分项系数,取1.3;风荷载作用分项系数,取1.5;

SGE、SEhK——重力荷载代表值的效应、水平地震作用标准值的效应;

ΨW——风荷载的组合值系数,当风荷载起控制作用时,取0.2,否则取0.0;
5.1 支架横向结构体系
由于双面光伏组件背后不宜有遮挡,因此双面光伏组件不适合采用立柱“横梁+檩条”的结构体系。因此,可将檩条取消,将光伏组件直接连接到两侧的横梁上,如图3所示。
每块光伏组件两侧均设置横梁,组件通过压块和托片固定到横梁上,横梁通过前后立柱固定到基础上。为了保证结构侧向的稳定,前立柱沿纵向设置一根纵向支撑,后立柱沿纵向设置两根纵向支撑,双面光伏组件支架立面如图4所示。该支架结构体系取消纵向檩条,有效的避免了其对组件背面的遮挡。同时立柱设置的纵向支撑,提供了支架纵向的刚度,使支架在纵向形成稳定的支架体系。具体安装效果详见第7节应用案例。
图4所示支架横向结构可根据立柱与基础连接形式的不同,分为两种结构体系,柱底铰接和柱底固结的形式。柱底铰接形式为行架式横向结构体系,柱底固结为排架式横向结构体系。图5所示两种形式均为行架式横向结构体系,该结构体系前后立柱与基础采用铰接的形式,并且采用一根或者两根横向支撑提供侧向刚度,形成稳定的结构不变体系。图6所示三种形式均为排架式横向结构体系,该结构体系前后立柱与基础采用固结的形式,并且采用一根或两根纵向支撑提供侧向刚度,增强结构的抗侧力稳定性。基础设计同传统光伏支架。

5.2 支架纵向结构体系

支架纵向结构体系根据立柱与基础的连接形式不同,同样分为两种结构体系,柱底铰接和柱底固结的形式。柱底铰接形式为行架式纵向结构体系,见图7。柱底固结为排架式纵向结构体系,见图8。
从图7可以看出,行架式纵向结构体系由于柱底铰接,立柱纵向必须设置纵向斜撑以保证支架纵向形成稳定的结构体系。对于排架式纵向结构体系,由于立柱底部固定,纵向支撑根据实际受力情况确定是否设置。不论行架式还是排架式支架体系,纵向横撑均设置在立柱上,距离组件背面有一定的距离,这样能有效地避免杆件对双面光伏组件的遮挡,从而能更好地发挥双面组件的优势,提高发电量。

5.3 支架材料

本创新支架方案的优势就在于能采用常规的光伏支架杆件及材料,具有广泛的适用性。常用杆件如图9所示。
图10为光伏常用压块和垫片,压块与垫片采用螺栓拧紧,中间夹光伏组件实现固定。
6.1 支架整体仿真验证
为验证支架整体的稳定性和承载能力,通过ABAQUS有限元软件对支架进行仿真。根据《建筑结构荷载规范》及《光伏发电站设计规范》,以河南郑州项目为例,该地区25年基本风压为0.38kn/m2,通过本文4.1条调整后风压取值0.72kn/m2。通过面荷载施加给支架体系。图11及图12分别为排架式和行架式支架整体仿真结果,结果显示风压产生的结构横梁最大位移分别约0.19mm、0.49mm,小于横梁计算跨度的1/250,满足《光伏发电站设计规范》(GB50797-2012)。风压产生的柱侧侧移分别为0.1mm、0.36mm,小于柱高的1/60,同样满足规范要求。因此结构整体稳定性符合要求。
需要指出,排架式支架比行架式支架结构约束更多,超静定次数更高,因此结构位移小,稳定性好。从结构稳定性角度,本文推荐采用排架式支架结构体系。

6.2 压块与横梁节点仿真验证

为验证压块与横梁节点部位的受力,取一根横梁采用三维应力单元进行仿真分析。风荷载施加到压块上,通过压块传递给横梁,三角连接件底部设置固定支座,见图13,横梁通过三角支座固定。
设计规范要求,支架采用的螺栓均固定拧紧。因此,各部分可视为紧密结合,不产生滑移,采用共单元节点进行仿真分析。通过图14及图15可以看出,风压产生的最大应力在横梁上,为160.2MPA,小于钢材强度设计值215MPA。
从图16可以看出,风压产生的最大位移为0.95mm(特别指出该位移与图11、12所示位移不同,是因为荷载施加方式不同,图11及图12仅为验证结构体系整体稳定性,因此荷载采取沿横梁施加线荷载的方式),横梁截面无翘曲,因此,该创新压块节点满足强度要求。
图17及图18为风吸力作用下,节点与横梁的位移和应力图。最大位移发生在压块上,为0.58mm,最大应力发生在横梁上为96MPA,同样小于钢材强度设计值215MPA。因此,风吸力作用下,节点和横梁同样满足强度要求。

本创新解决方案通过取消光伏支架檩条,将双面组件支架安置在横梁上,然后在前后立柱设置纵向支撑的方式,采用常见的材料,适用性强,既解决了双面光伏组件背后遮挡的问题,又提供了足够的支架支撑。通过实际工程检验,取得了良好的效果。案例照片见以下附图。

相关新闻

更多 >
获取最新价格?我们会尽快回复(12小时内)
  • 重新获取验证码
友情链接:百度一下 搜索 360搜索 网站首页
412永利皇宫网站